Construction learning relies on usage and function
An artificial language learning study

Florent Perek & Adele Goldberg
Universität Basel & Princeton University
Usage-based linguistics

• Grammar emerges from usage
• Language acquisition is input-driven
• Speakers are sensitive to statistical information
A wealth of evidence

• Word segmentation can be learned from transitional probabilities (Saffran et al. 1996; Estes et al. 2007)

• Frequent strings of words are processed faster (Arnon & Snider 2010; Gathercole & Baddeley 1993)

• Artificial language learning studies (Hudson Kam & Newport 2005; Wonnacott et al. 2008)
Artificial language learning studies

• “Made-up” language taught to participants with scene-sentence pairs

• The statistical structure of the input can be manipulated, different inputs given to different groups

• Test the role of statistics in language learning
Wonnacott et al. (2008)

• Two constructions with same meaning
 – “Verb Agent Patient” (VSO)
 – “Verb Patient Agent ła” (VOS-ła)

• Distribution varied across conditions
 – Some verbs occur only in either VSO or VOS-ła
 – Some verbs alternate, i.e., they occur in both
Wonnacott et al. (2008)

• Learners depended on the statistics in the input:
 – “Lexicalist” input condition:
 No verb alternated \rightarrow conservative behavior
 – “Alternating” input condition:
 All verbs alternated \rightarrow fully productive behavior
 – 33% of verbs alternate in input condition:
 Partially general and partially lexically specific behavior.
Statistics in language learning

• Does language learning only consist of gleaning statistical regularities in the input?

• There are learning biases
 – Communicative (Piantadosi et al. 2012)
 – Cognitive: working memory (Gathercole & Baddeley 1993), inductive processes (Griffiths et al. 2010)

• What about the function of constructions themselves?
Our experiment

- Similar to Wonnacott et al.’s but more ecologically valid
 - Their constructions are interchangeable: atypical situation
 - Difference in form often corresponds to some difference in function (Bolinger 1968; Goldberg 1995)
 - E.g., information structure in the dative alternation (cf. Bresnan et al. 2007)

 She gave him a book She gave it to the boy.

 ?She gave a book to him. *She gave the boy it.

- We use constructions with a difference in function

- How does this interact with usage?
Our experiment

- Two word order constructions: SOV and OSV
- Difference in information structure:

 OSV order used exclusively with pronouns

 ‘the panda$_{agent}$ pushed the pig$_{patient}$’ intended meaning
 the panda the pig mooped SOV
 him the panda mooped ProSV

- Six novel verbs (e.g., *glim*, *moop*, *wub*) referring to transitive actions (e.g., ‘punch’, ‘push’, ‘head-butt’)

Our experiment

• Two test conditions
 – Lexicalist condition: 3 SOV-only, 3 ProSV-only verbs
 – (Partially) Alternating condition: 2 SOV-only, 2 ProSV-only, 2 alternating verbs

• A third “control” condition (same-meaning condition)
 – Same as lexicalist, but without the difference in information structure (no pronouns)
 – To replicate Wonnacott et al. and check that speakers are able to learn verb-specific behavior
Example of exposure pair

the rabbit the panda norped
Procedure

• Exposure (2 days)
 – 36 sentence-scene pairs, each verb used 6 times
 – Participants asked to repeat each sentence

• Sentence production task
 – Participants asked to describe new scenes with learned novel verbs.
 – Interspersed with distractor tasks (vocabulary questions, forced-choice sentence comprehension)

• Sentence rating task (not reported here; consistent with production)
Production task

• Different questions used to elicit pronouns
 – “What happened here?”: neutral context
 – “What happened to the <patient>?”: elicits the use of a pronoun for the patient argument

• Two trials per verb, one in each context
Example of production trial (neutral context)

what happened here?
Example of production trial (biasing context)

what happened to the panda?
Participants

- 64 Princeton undergrads, aged 18-22
 - 24 in the lexicalist condition
 - 18 in the “alternating” condition (2/6 verbs alternate)
 - 12 in the control, same-meaning lexicalist condition
Results

• To what extent do speakers generalize constructions to unattested verbs?

• Hypothetical data: conservative, verb-based behavior
Results

• To what extent do speakers generalize constructions to unattested verbs?

• Hypothetical data: full generalization across verbs
Results: alternating vs. lexicalist condition

Alternating condition: two alternating verbs

Lexicalist condition: no alternating verbs

Verb-based conservativeness

Full generalization
Mixed effects logistic regression

SOV ~ Bias + VerbType * Condition + (1 | Subject) + (1 | Verb) + (1 | Meaning)

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Std. error</th>
<th>z-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>3.1838</td>
<td>0.3999</td>
<td>7.961</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Bias (Pro)</td>
<td>-2.3499</td>
<td>0.2732</td>
<td>-8.603</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>VerbType (ProSV)</td>
<td>-1.3637</td>
<td>0.5118</td>
<td>-2.665</td>
<td>0.0077</td>
</tr>
<tr>
<td>Condition (alternating)</td>
<td>-1.8364</td>
<td>0.3286</td>
<td>-5.588</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>VerbType (ProSV) : Condition (alt.)</td>
<td>2.0295</td>
<td>0.5424</td>
<td>3.741</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

- Main effect of Bias: responses are context-dependent in both conditions
- Interaction between Condition and VerbType: the (conservative) effect of verb type is specific to the lexicalist condition
Results: lexicalist vs. same-meaning

Lexicalist: no alternating verbs, different functions

SOV–only verbs

ProSV–only verbs

Same-meaning: no alternating verbs, same function

OSV–only verbs

Verb-based conservativeness

Full generalization
Mixed effects logistic regression

SOV ~ Bias * Condition + VerbType * Condition + (1 | Subject) + (1 | Verb) + (1 | Meaning)

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Std. error</th>
<th>z-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>3.9066</td>
<td>0.6273</td>
<td>6.227</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Bias(Pro)</td>
<td>-2.8129</td>
<td>0.3954</td>
<td>-7.115</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>VerbType (OSV)</td>
<td>-2.2545</td>
<td>0.3938</td>
<td>-5.725</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Condition(same-meaning)</td>
<td>-0.5146</td>
<td>1.1023</td>
<td>-0.467</td>
<td>0.6406</td>
</tr>
<tr>
<td>Condition(same-meaning) : Bias(Pro)</td>
<td>2.5683</td>
<td>0.8611</td>
<td>2.982</td>
<td>0.0029</td>
</tr>
<tr>
<td>Condition(sa-me) : VerbType (OSV)</td>
<td>-5.1771</td>
<td>1.1469</td>
<td>-4.514</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

- Condition interacts with both Bias and VerbType
- No effect of context in the same-meaning condition
- Effect of VerbType stronger in same-meaning than in lexicalist condition
Summary

• Tendency for participants to generalize
 – Viz. to use verbs in the contextually appropriate construction
 – They may ignore usage of individual verbs

• This tendency interacts with the input
 – Alternating verbs promote productivity, as in Wonnacott et al.
 – But here: full generalization with only 1/3 alternating verbs

• Sentence rating results in line with production data

Cf. Perek & Goldberg (R&R at JML)
Conclusion

• There is indeed an interaction between usage and the function of constructions

• Refinement of the usage-based hypothesis
 – Statistical information is essential to learn both item-specific patterns and general constructions
 – But the communicative functions of constructions determine which dimensions of similarity are relevant to generalizations
 – Item-based constraints are less relevant when other dimension is available
Thanks for your attention!
florent.perek@gmail.com

