Distributional characterization of constructional meaning

Florent Perek
Albert-Ludwigs-Universität Freiburg / Université Lille III
florent.perek@gmail.com

Corpus Linguistics 2009 – Liverpool – 23th July 2009
• Goal
 – Design and test ways to derive the meaning of grammatical constructions from corpus data
• Outline
 – Theoretical background
 – First corpus study
 • Distributional comparison of constructions
 • Limits of this approach
 – Follow-up study based on LSA
 – Conclusion and prospects
Theoretical background

- Grammar in Cognitive Linguistics
 - Grammar = inventory of form-meaning pairs
 - No principled separation between syntax and lexicon
 - Syntactic patterns = form-meaning pairs
 - Argument Structure Constructions (Goldberg 1995, 2006)
 - Syntactic meaning
 - = schematized experience of an event type: transfer, movement, change of state, ...
 - Most evident when verbs are used creatively
 - e.g. John sneezed the napkin off the table
 - Predicts which verbs are allowed
 - Experimental evidence for constructions
Theoretical background

• Example: the ditransitive construction
 (from Goldberg 1995)

 e.g. Mary gave her sister a penny.
 Sam kicked Peter the ball.

 Syntax: Subject __ Agent V Object1 __ Recipient Object2 __ Theme
 Semantics: Agent CAUSES Recipient TO RECEIVE Theme
Theoretical background

• The origin of constructional meaning
 – Current hypothesis: abstraction of verbal meaning
 • e.g. NP V NP NP (ditransitive)
 occurs with verbs of transfer: give, send, hand, …
 => the syntactic pattern is associated to a transfer meaning
 • Evidenced by the facilitating factor of a biased distribution
 (cf. Goldberg et al. 2004)
 – We investigated this idea with two corpus studies
Study 1

- Hypothesis: distributional distance correlate with semantic distance
 - Supported by:
 - Goldberg's model: constructional meaning constrains the verbs occurring in the construction
 - Corpus studies
 - Stefanowitsch and Gries (2003), Gries et al. (2005)
 - The strongest collocates have the meaning closest to that of the construction
 - Constructions with different meaning should have different distributions, and conversely
 - Distributional differences should reflect semantic differences between constructions
Study 1

• How to compare distributions?
 – Vector space approach to distributional similarity
 • Verbal distribution = vector (of frequencies)
 • The verbs define a multidimensional space
 • Distributional distance = distance between vectors
Study 1

- **Simple example with only 2 dimensions**

<table>
<thead>
<tr>
<th>Verb</th>
<th>Frequency in the ditransitive</th>
<th>Frequency in the caused motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>give</td>
<td>153</td>
<td>34</td>
</tr>
<tr>
<td>send</td>
<td>12</td>
<td>18</td>
</tr>
</tbody>
</table>

\[
\text{ditransitive} = \vec{C}_1 = \begin{bmatrix} 153 \\ 12 \end{bmatrix} \\
\text{caused motion} = \vec{C}_2 = \begin{bmatrix} 34 \\ 18 \end{bmatrix}
\]

\[
\text{similarity} = \cos(\vec{C}_1, \vec{C}_2)
\]

\[
\cos(\vec{C}_1, \vec{C}_2) \in [0,1]
\]

1 \(\Rightarrow\) identity

the closer to 0, the more different
Study 1

- Six constructions under study

<table>
<thead>
<tr>
<th>Construction</th>
<th>Semantics</th>
<th>Syntax</th>
<th>Example</th>
<th>Freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intransitive Motion</td>
<td>X_{Theme} MOVE Y_{Path}</td>
<td>Subject-Verb-Oblique$_{\text{Path}}$</td>
<td>The ball rolled down the hill</td>
<td>564</td>
</tr>
<tr>
<td>Change of state</td>
<td>X_{Theme} BECOME Y_{State}</td>
<td>Subject-Verb-Oblique$_{\text{State}}$</td>
<td>The pond froze solid</td>
<td>471</td>
</tr>
<tr>
<td>Caused motion</td>
<td>X_{Agent} CAUSE Y_{Patient} TO MOVE Z_{Path}</td>
<td>Subject-Verb-Object-Oblique$_{\text{Path}}$</td>
<td>Bill broke the hell into the bowl</td>
<td>290</td>
</tr>
<tr>
<td>Resultative</td>
<td>X_{Agent} CAUSE Y_{Patient} TO BECOME Z_{State}</td>
<td>Subject-Verb-Object-Oblique$_{\text{State}}$</td>
<td>Bill watered the tulip flat</td>
<td>175</td>
</tr>
<tr>
<td>Ditransitive</td>
<td>X_{Agent} CAUSE $Y_{\text{Recipient}}$ TO RECEIVE Z_{Theme}</td>
<td>Subject-Verb-Object1-Object2</td>
<td>Joe painted Sally a picture</td>
<td>307</td>
</tr>
<tr>
<td>Conative</td>
<td>X_{Agent} DIRECT ACTION AT Y_{Target}</td>
<td>Subject-Verb-Oblique$_{\text{at}}$</td>
<td>Bill kicked at the ball</td>
<td>178</td>
</tr>
</tbody>
</table>

- Manually identified in the ICE-GB (spoken)
- Extraction of the verbal distribution
Study 1

- Comparison of all six constructions
Study 1

• Possible improvement
 – Collexeme analysis (Stefanowitsch and Gries 2003)
 • Some verbs are more important collocates for some constructions than for others
 • Not rendered by raw frequencies
 • Collostruction strength instead of frequencies
• With collexeme analysis
Interim conclusion

- Do reflect relevant meaning similarities
 - Change of state / change of location (cf. Goldberg & Jackendoff 2004)
 - Caused motion / transfer
- But purely distributional
 - Does not take the meaning of verbs into account
 - Would the result be different if we do?
- Two issues:
 - Representation of verbal meaning
 - Representation of constructional meaning derived from the former
Interim conclusion

• How to represent word meaning in a corpus?
 – Semantic annotations (e.g. WordNet ids)
 – Distributional characterization

• Latent Semantic Analysis
 – Used in data mining
 – Based on co-occurrences of words in documents
 – Correlates with human judgements on semantic similarity, cf. Landauer, Foltz and Laham (1998)
 – Often used as an objective measure of semantic similarity, e.g. in Bencini & Goldberg (2000)
Word meaning in LSA = a vector
- Semantic distance = distance between vectors
- Construction vectors can be derived from the vectors of the verbs in its distribution

\[\vec{C} = \sum (freq(V) \times \vec{V}) \]

E.g. the ditransitive

<table>
<thead>
<tr>
<th>Verb</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>allow</td>
<td>2</td>
</tr>
<tr>
<td>ask</td>
<td>6</td>
</tr>
<tr>
<td>write</td>
<td>1</td>
</tr>
</tbody>
</table>

\[\text{ditransitive} = 2 \times \text{allow} + 6 \times \text{ask} + \ldots + 1 \times \text{write} \]

- Sum of vectors = vector in the same space
- Same distance metrics than for words
Study 2

- Corpus submitted to LSA
- Two representations of constructional meaning:
 - Vectors calculated from word vectors + distribution
 - Vector of the construction symbol (=word) artificially inserted in the corpus
- Questions:
 - To what extent do symbolic meaning and distributionally derived meaning correlate in the LSA space?
 - How semantic differences between constructions are reflected if verbal meaning is taken into account?
Comparison of symbolically derived vs. distributionally derived constructional meaning

- They are strongly similar

<table>
<thead>
<tr>
<th>Construction</th>
<th>Similarity between construction symbol and distribution vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change of state</td>
<td>0.7981</td>
</tr>
<tr>
<td>Resultative</td>
<td>0.7391</td>
</tr>
<tr>
<td>Caused motion</td>
<td>0.7378</td>
</tr>
<tr>
<td>Ditransitive</td>
<td>0.7157</td>
</tr>
<tr>
<td>Conative</td>
<td>0.7649</td>
</tr>
<tr>
<td>Intransitive Motion</td>
<td>0.8322</td>
</tr>
</tbody>
</table>

Seems to validate the view that constructional meaning originates with verbal meaning
Study 2

- Comparison of distributionally derived constructional meaning

- No sharp differences between constructions
- The most frequent words are not distinctive enough
- They appear in too wide a range of contexts
- LSA does not capture sharp semantic differences

A possible answer
• Solution: use “stopwords”
 – Frequent verbs are simply ignored in the analysis
 – Semantic differences between constructions are captured by the less frequent verbs
A slight improvement
- Conative evidently different from other constructions
- But still no clear differences
• Conclusion
 – Distribution captures semantic differences between constructions
 – Less so clear with an account of verbal meaning
 • Seems to capture the meaning of constructions
 • But not semantic differences between constructions

• Prospects
 – Bigger corpus to derive word vectors from
 – Use dictionary-based semantic distance
 • more reliable, especially for highly frequent verbs
References

