Distributional characterization of constructional meaning

Florent Perek

Albert-Ludwigs-Universität Freiburg / Université Lille III florent.perek@gmail.com

Corpus Linguistics 2009 – Liverpool – 23th July 2009

Overview

- Goal
 - Design and test ways to derive the meaning of grammatical constructions from corpus data
- Outline
 - Theoretical background
 - First corpus study
 - Distributional comparison of constructions
 - Limits of this approach
 - Follow-up study based on LSA
 - Conclusion and prospects

Theoretical background

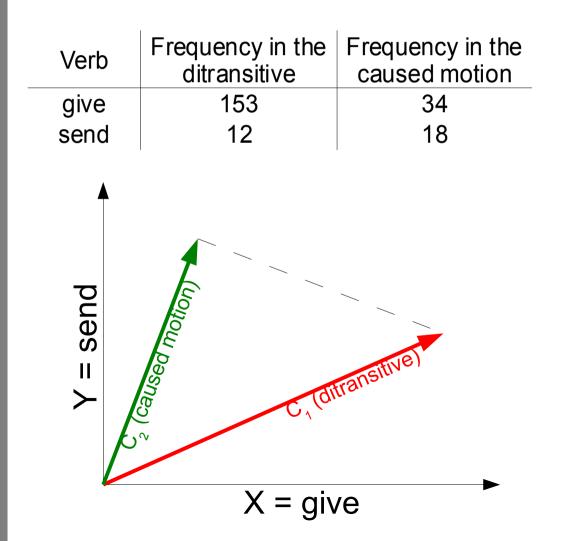
- Grammar in Cognitive Linguistics
 - Grammar = inventory of form-meaning pairs
 - No principled separation between syntax and lexicon
 - Syntactic patterns = form-meaning pairs
 - Argument Structure Constructions (Goldberg 1995, 2006)
 - Syntactic meaning
 - = schematized experience of an event type: transfer, movement, change of state, ...
 - Most evident when verbs are used creatively e.g. *John sneezed the napkin off the table*
 - Predicts which verbs are allowed
 - Experimental evidence for constructions

Theoretical background

• Example: the ditransitive construction (from Goldberg 1995)

e.g. Mary gave her sister a penny. Sam kicked Peter the ball.

Syntax:Subject
AgentVObject1
RecipientObject2
ThemeSemantics:Agent CAUSESRecipient TO RECEIVE Theme


Theoretical background

- The origin of constructional meaning
 - Current hypothesis: abstraction of verbal meaning
 - e.g. NP V NP NP (ditransitive)
 - occurs with verbs of transfer: *give*, *send*, *hand*, ... => the syntactic pattern is associated to a transfer meaning
 - Evidenced by the facilitating factor of a biased distribution (cf. Goldberg et al. 2004)
 - We investigated this idea with two corpus studies

- Study 1
 - Hypothesis: distributional distance correlate with semantic distance
 - Supported by:
 - Goldberg's model: constructional meaning constrains the verbs occurring in the construction
 - Corpus studies
 - Stefanowitsch and Gries (2003), Gries et al. (2005)
 - The strongest collocates have the meaning closest to that of the construction
 - Constructions with different meaning should have different distributions, and conversely
 - Distributional differences should reflect semantic differences between constructions

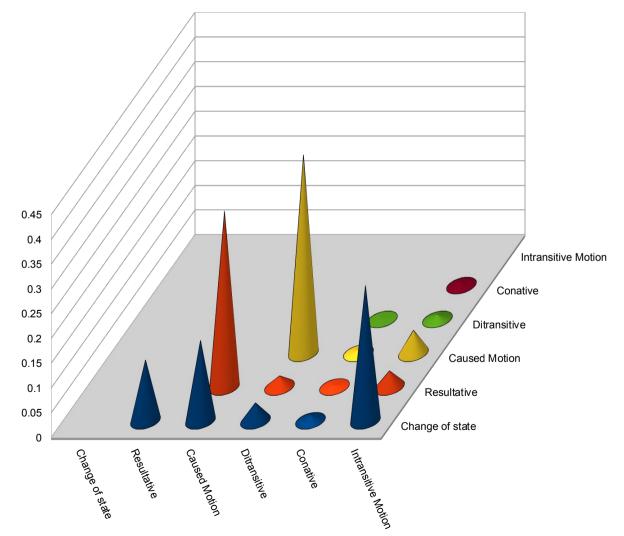
- How to compare distributions?
 - Vector space approach to distributional similarity
 - Verbal distribution = vector (of frequencies)
 - The verbs define a multidimensional space
 - Distributional distance = distance between vectors

• Simple example with only 2 dimensions

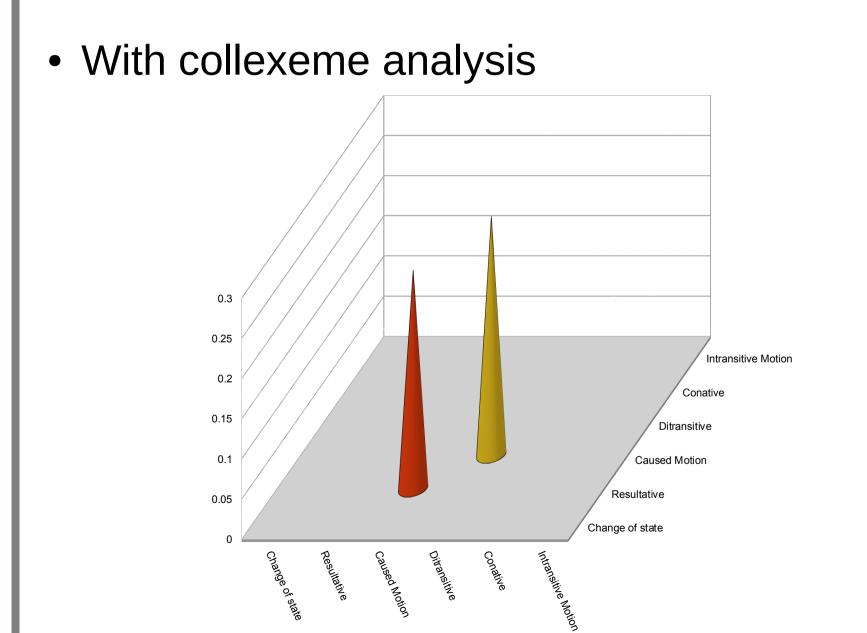
$$\vec{ditransitive} = \vec{C}_1 = \begin{bmatrix} 153\\12 \end{bmatrix}$$
$$\vec{causedmotion} = \vec{C}_2 = \begin{bmatrix} 34\\18 \end{bmatrix}$$

similarity =
$$\cos(\widehat{\vec{C}_{1,}\vec{C}_{2}})$$

$$\cos(\widehat{\vec{C}_{1,}\vec{C}_{2}}) \in [0,1]$$


1 => identity the closer to 0, the more different

Six constructions under study


Construction	Semantics	Syntax	Example	Freq.
Intransitive Motion	X _{Theme} MOVE Y _{Path}	Subject-Verb-Oblique _{Path}	The ball rolled down the hill	564
Change of state	X _{Theme} BECOME Y _{State}	Subject-Verb-Oblique _{State}	The pond froze solid	471
Caused motion	X_{Agent} CAUSE $Y_{Patient}$ TO MOVE Z_{Path}	Subject-Verb-Object-Oblique _{Path}	Bill broke the hell into the bowl	290
Resultative	X_{Agent} CAUSE $Y_{Patient}$ TO BECOME Z_{State}	Subject-Verb-Object-Oblique	Bill watered the tulip flat	175
Ditransitive	$X_{Agent} CAUSEY_{Recipient} TO RECEIVEZ_{Theme}$	Subject-Verb-Object1-Object2	Joe painted Sally a picture	307
Conative	X_{Agent} DIRECT ACTION AT Y_{Target}	Subject-Verb-Oblique _{at}	Bill kicked at the ball	178

- Manually identified in the ICE-GB (spoken)
- Extraction of the verbal distribution

Comparison of all six constructions

- Possible improvement
 - Collexeme analysis (Stefanowitsch and Gries 2003)
 - Some verbs are more important collocates for some constructions than for others
 - Not rendered by raw frequencies
 - Collostruction strength instead of frequencies

Interim conclusion

Interim conclusion

- Do reflect relevant meaning similarities
 - Change of state / change of location (cf. Goldberg & Jackendoff 2004)
 - Caused motion / transfer
- But purely distributional
 - Does not take the meaning of verbs into account
 - Would the result be different if we do?
 - Two issues:
 - Representation of verbal meaning
 - Representation of constructional meaning derived from the former

Interim conclusion

- How to represent word meaning in a corpus?
 - Semantic annotations (e.g. WordNet ids)
 - Distributional characterization
- Latent Semantic Analysis
 - Used in data mining
 - Based on co-occurences of words in documents
 - Correlates with human judgements on semantic similarity, cf. Landauer, Foltz and Laham (1998)
 - Often used as an objective measure of semantic similarity, e.g. in Bencini & Goldberg (2000)

Interim conclusion

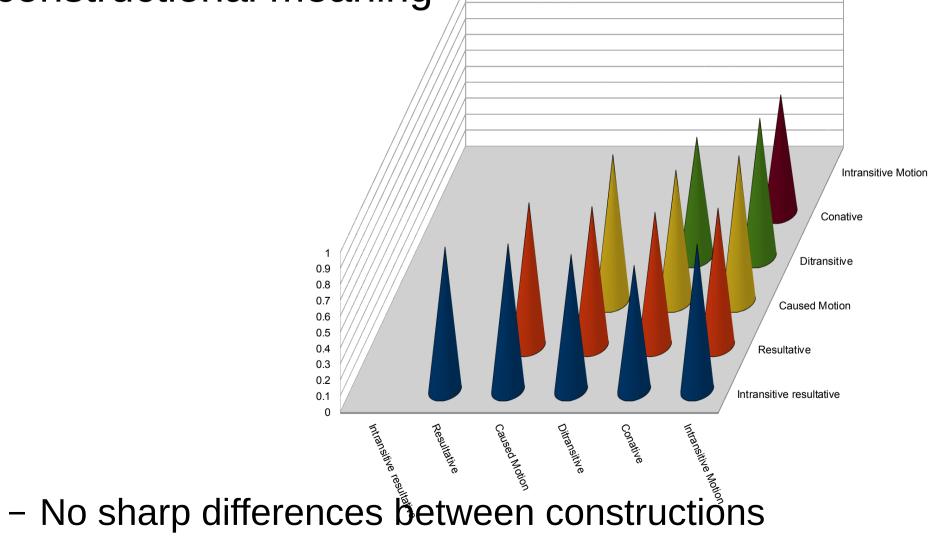
- Word meaning in LSA = a vector
 - Semantic distance = distance between vectors
 - Construction vectors can be derived from the vectors of the verbs in its distribution

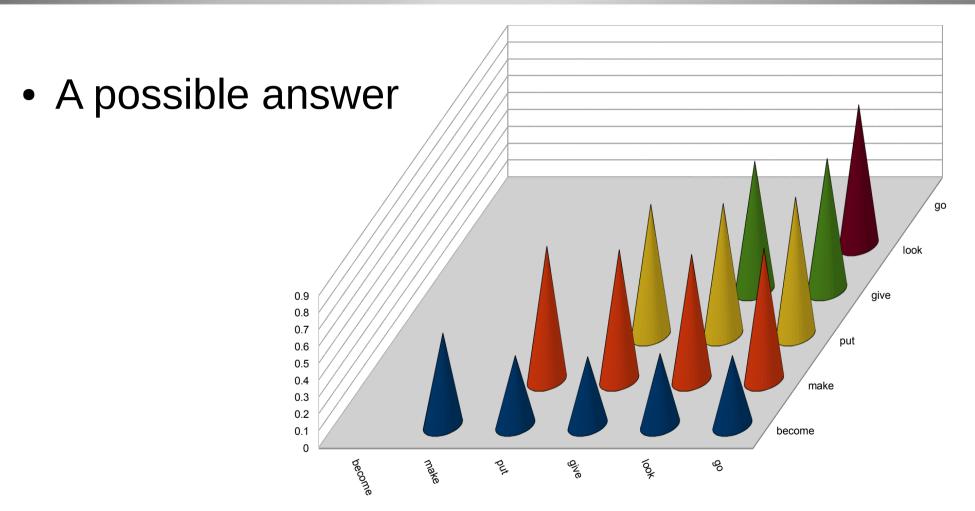
$$\vec{C} = \sum \left(freq(V) \times \vec{V} \right)$$

e.g. the ditransitive

Verb	Frequency	
allow ask :	2 6	$ditransitive = 2 \times allow + 6 \times ask + + 1 \times write$
write	1	

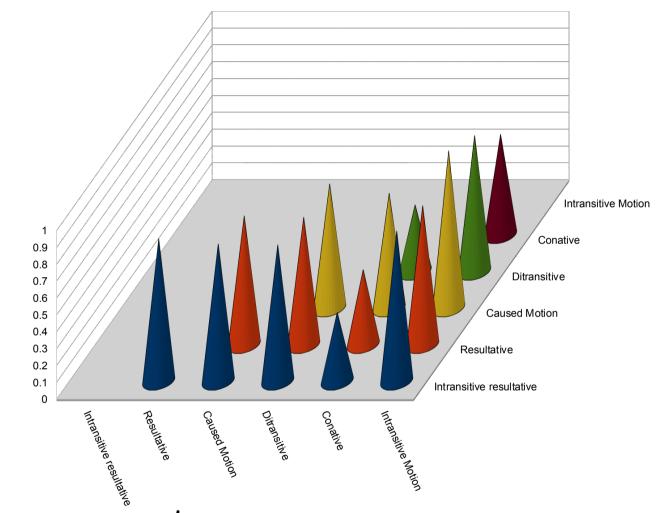
- Sum of vectors = vector in the same space
- Same distance metrics than for words


- Study 2
 - Corpus submitted to LSA
 - Two representations of constructional meaning:
 - Vectors calculated from word vectors + distribution
 - Vector of the construction symbol (=word) artificially inserted in the corpus
 - Questions:
 - To what extent do symbolic meaning and distributionally derived meaning correlate in the LSA space?
 - How semantic differences between constructions are reflected if verbal meaning is taken into account?


- Comparison of symbolically derived vs.
 distributionally derived constructional meaning
 - They are strongly similar

Construction	Similarity between construction symbol and distribution vector
Change of state	0.7981
Resultative	0.7391
Caused motion	0.7378
Ditransitive	0.7157
Conative	0.7649
Instransitive Motion	0.8322

Seems to validate the view that constructional meaning originates with verbal meaning


 Comparison of distributionally derived constructional meaning

- The most frequent words are not distinctive enough
- They appear in two wide a range of contexts
- LSA does not capture sharp semantic differences

- Solution: use "stopwords"
 - Frequent verbs are simply ignored in the analysis
 - Semantic differences between constructions are captured by the less frequent verbs

- A slight improvement
 - Conative evidently different from other constructions
 - But still no clear differences

Conclusion

Conclusion

- Distribution captures semantic differences between constructions
- Less so clear with an account of verbal meaning
 - Seems to capture the meaning of constructions
 - But not semantic differences between constructions
- Prospects
 - Bigger corpus to derive word vectors from
 - Use dictionary-based semantic distance
 - more reliable, especially for highly frequent verbs

References

- Bencini, G. and Goldberg, A. (2000). The contribution of argument structure constructions to sentence meaning. *Journal of Memory and Language* 43(4):640–51.
- Goldberg, A. E. (1995). *Constructions: a construction grammar approach to argument structure*. University of Chicago Press, Chicago.
- Goldberg, A. E. (2006). *Constructions at Work: The Nature of Generalization in Language.* Oxford University Press, Oxford.
- Goldberg, A. E., D. Casenhiser, and N. Sethuraman (2004). Learning argument structure generalizations. *Cognitive Linguistics* 15(3):289–316.
- Goldberg, A. E. and Jackendoff, R. (2004). The English resultative as a family of constructions. *Language* 80(3):532–568.
- Gries, S. T., Hampe, B., and Schönefeld, D. (2005). Converging evidence: bringing together experimental and corpus data on the association of verbs and constructions. *Cognitive Linguistics* 16(4):635–76.
- Landauer, T. K., P. W. Foltz and D. Laham (1998). An Introduction to Latent Semantic Analysis. *Discourse Processes* 25(2&3):259–284.
- Perek, F. (2008). Towards a constructional approach to automatic argument structure acquisition: the case of oblique phrases. Master's thesis, Université Charles de Gaulle Lille III, Villeneuve d'Ascq, France.
- Stefanowitsch, A. and S. T. Gries (2003). Collostructions: investigating the interaction between words and constructions. *International Journal of Corpus Linguistics* 8.2:209-43.