# Using vector-space models to visualize the semantic distribution of argument structure constructions

Florent Perek Universität Basel & Princeton University florent.perek@unibas.ch



# **Overview**

- Problem: using semantics in corpus studies of argument structure
- Description of the present approach
  - Based on vector-space semantics
  - Applied to the study of syntactic productivity in diachrony
- Case study



- Most theories of argument structure rely on semantics
  - Levin (1993): "grammatically relevant features of meaning"
  - Pinker (1989), Jackendoff (1990): event structure + linking rules
  - Construction grammar: principle of semantic coherence (Goldberg 1995)

A verb can be used in an argument structure construction if its meaning is compatible with the meaning of the construction



- How do we assess the semantics of verbs?
  - Meaning is not directly observable
  - No real consensus on what verb meaning consists of
- Especially problematic for quantitative corpus studies
  - A corpus only gives access to word forms
  - How do we factor in semantics?



- First (and most common) solution: manual semantic annotation
  - Based on the semantic intuitions of the analyst
  - Meaning is harder to annotate than grammatical features
    - Time-consuming
    - Unclear criteria, can be highly subjective
    - Categorical data: how do we quantify semantic similarity?



- Second solution: norming study
  - Semantic information collected from a group of native speakers
    - e.g., how similar are words in a pair? (Bybee and Eddington 2006)
  - Also hard and time-consuming
  - For semantic similarity, restricted to a limited set of words
    - Judgments must be collected for every pair
    - The number of judgments to be collected increases exponentially with the number of words



- A third alternative?
  - Computational linguistics provides techniques for automatic annotation
  - Many of them are commonly employed to annotate corpora: part-of-speech tagging, syntactic parsing, dependency annotations
  - Ways to handle semantics have also been devised
- Vector-space models: based on the distributional hypothesis
  "You shall know a word by the company it keeps." (Firth 1957: 11)
- Words that occur in similar contexts tend to have related meanings
- Therefore, a way to access the meaning of words is through their distributions



- First step: building a word co-occurrence matrix from a corpus
  - The matrix is filled by counting, for each occurrence of each word, the frequency of co-occurrence of other words within a set context window
  - Function words are usually ignored
  - e.g., kiss (+/-5-word window)

frizzy hair, felt him **kiss** me on the cheek with give her my flowers, to **kiss** her hand, but did not Diana, and bent down to **kiss** him on the cheek. She towards him and tried to **kiss** her on the mouth. Over and I lean over and **kiss** her on the mouth. I

| frizzy | 1 |
|--------|---|
| hair   | 1 |
| feel   | 1 |
| cheek  | 2 |
| give   | 1 |
| flower | 1 |
| hand   | 1 |
| Diana  | 1 |
| bend   | 1 |
| try    | 1 |
| mouth  | 2 |
| lean   | 1 |



- Results in a Nwords x Nwords matrix
- Dimensionality reduction is usually employed on the co-occurrence matrix
  - i.e., the matrix is transformed so as to contain fewer columns, singling out the most salient contextual features of word distributions
  - Computationally more tractable
  - Preserves only the most informative aspects of word distributions
- Each word is associated with a row of the matrix
- Distributional hypothesis:
  - Semantic distance between words is a function of their distributional similarity
  - Similarity between rows approximate semantic similarity
  - It can be quantified by mathematical measures



- Benefits of vector-space models
  - The informal notion of semantic representation is turned into an empirically testable semantic model
  - In that model, semantic similarity can be quantified
- They have some psychological reality
  - Shown to correlate positively with human performance on various tasks: synonymy judgments, word association, semantic priming, ... (Lund et al. 1995, Landauer et al. 1998)
  - Models based on both experiential and distributional information perform even better than models based on either kind (Andrews et al. 2008)



- Only recently applied to address linguistic research questions
- To inductively determine semantic classes
  - Gries and Stefanowitsch (2010): clustering of the verbs in the distribution of constructions according to their frequent collocates
  - Levshina and Heylen (in press): identification of contrasting sets of semantic classes for the causees involved in Dutch causative constructions
- Can vector-space models also be used to investigate syntactic productivity?
  - i.e., the property of syntactic constructions to be combined with new words
  - In diachrony, productivity corresponds to the expansion of the lexical distribution of constructions



# **Case study**

٠

- My case study: the transitive *hell*-construction
  - V the hell out of NP

You scared the hell out of me!

- Conveys an intensifying function

scare the hell out of someone = 'scare someone very much'

- Some frequent "vulgar" variants: *crap*, *fuck*, *shit* instead of *hell*
- Lends itself nicely to a construction grammar analysis
  - The intensifying function is conveyed by the whole syntactic pattern
  - This pattern contains a verb slot: how did it evolve over time?



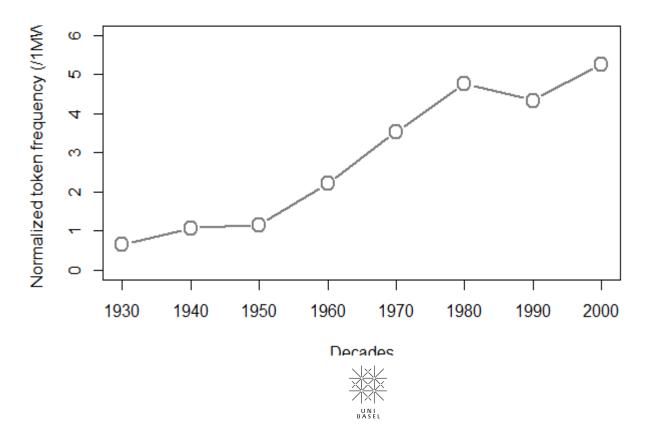
- Data from the Corpus of Historical American English (COHA; Davies 2010)
  - ~20 MW of AmE from each decade between 1810 and 2009
  - Written data balanced for genre: fiction, magazines, newspapers, non-fiction
- Query for the string "V the hell|crap|fuck|shit out of"
- Manual filtering (ruled out sentences like get the hell out of here)
- Clearly centered on two verbs: *scare* and *beat* (30% and 25% in the 2000s)
- But it can be used with a wide and diverse range of verbs:

Then I [...] avoided the hell out of his presence But you drove the hell out of it!

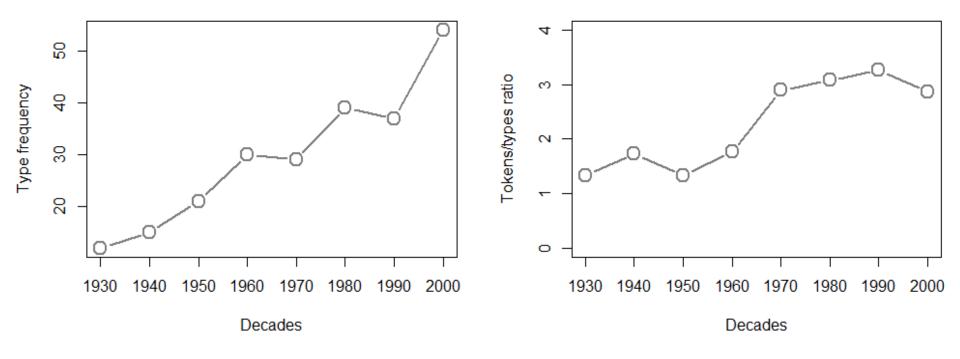
The Russians understood the hell out of that.



- A recent construction: first attestations from the 1930s
- The construction has been steadily increasing in frequency ever since



More and more verb types are used in the construction





- Type frequencies reflect an increase in productivity
- But they do not reflect the "structure" of that productivity
  - What kinds of verbs joined the distribution, and when?
  - Are there particular semantic domains preferred by the construction?
  - Did that change over time, and how?
  - In how far do these data line up with current hypotheses on productivity?

i.e., productivity is promoted by:

- High type frequency (Wonnacott et al. 2012; Zeschel 2012)

i.e., a high number of different lexical items occurring in the slots of the construction

- High semantic variability (Barðdal 2008; Suttle and Goldberg 2011)

i.e., how different these items are

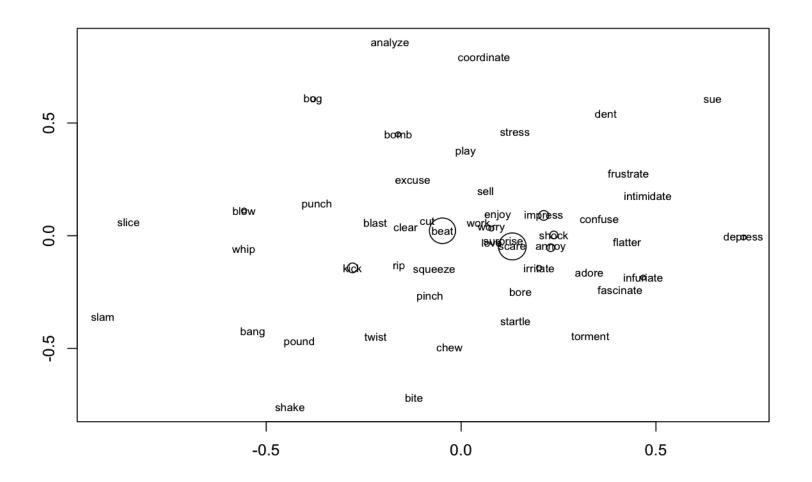


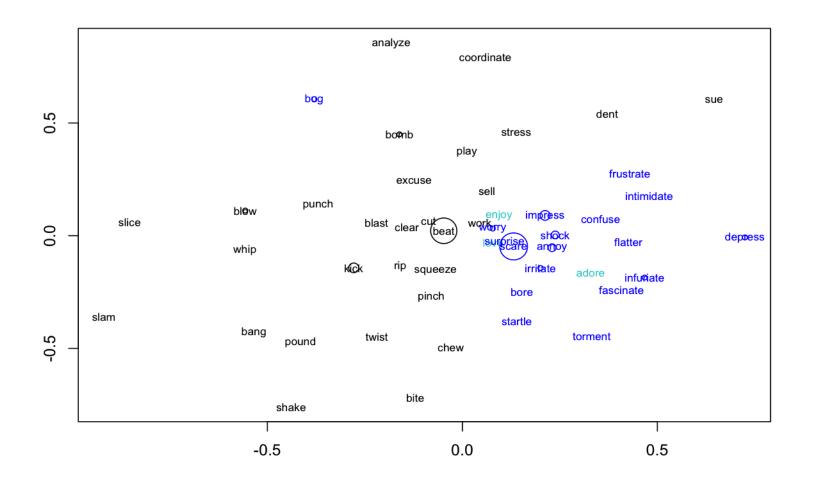
- A vector-space model to assess the meaning of the verbs in the *hell*-construction
  - Trained on the written part of the BNC (~90 MW)
  - Co-occurrence window of +/- 2 words
  - Stop-words: function words, highly frequent modifiers (*really*, *again*, ...), low-frequency words (F < 100)</li>
  - S-Space package (Java): https://github.com/fozziethebeat/S-Space
  - Random Indexing algorithm (Sahlgren 2001)

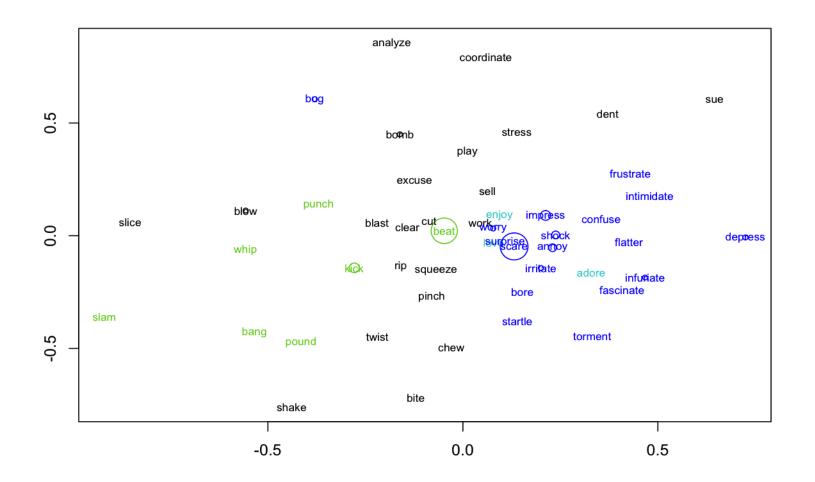


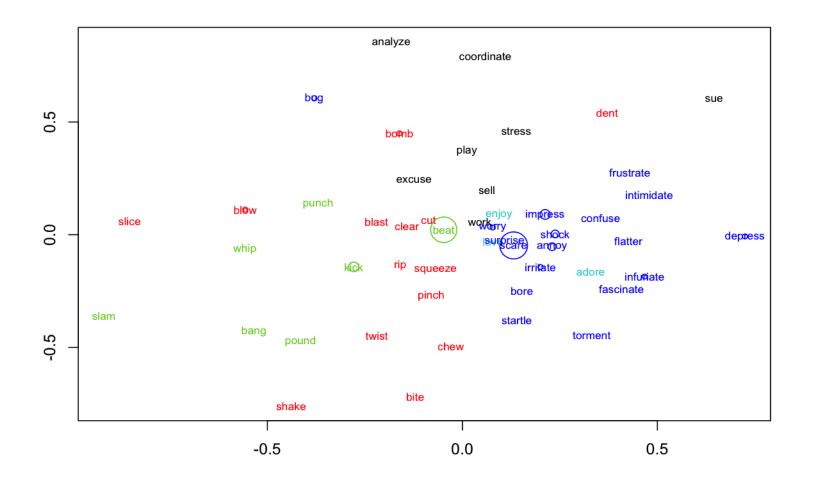
- How to visualize the semantic space?
  - By means of multidimensional scaling (MDS)
    - Aims to place objects in a space with 2 (or more) dimensions such that the between-object distances are preserved as well as possible
    - Each object is assigned coordinates in 2 dimensions
  - Semantic similarity matrix: pairwise similarities between verbs are computed (cosine distance)
  - The matrix is submitted to MDS and the coordinates of the verbs are plotted

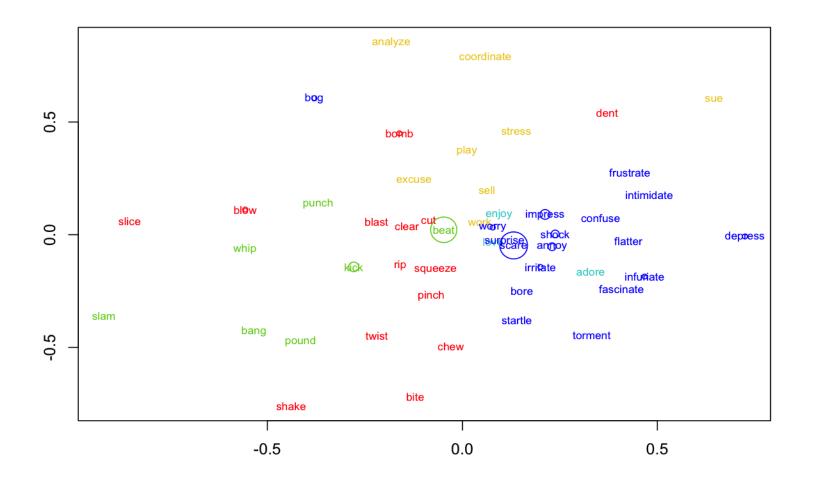








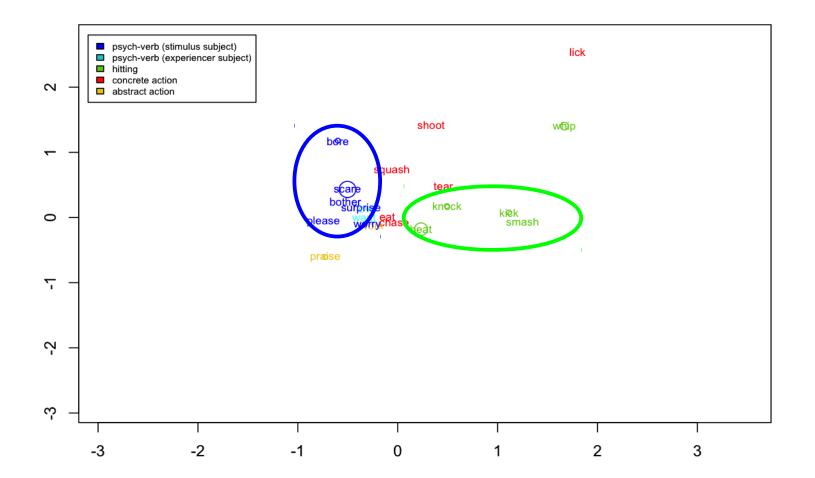




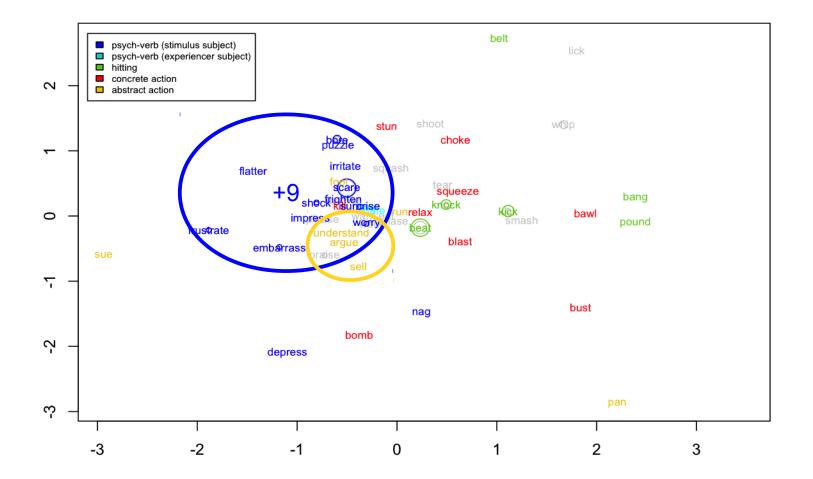
- Diachronic analysis: periods of 20 years
  - 1930s-1940s
  - 1950s-1960s
  - 1970s-1980s
  - 1990s-2000s
- By comparing these periods, we can follow the semantic development of the construction
- Similar to Hilpert's (2011) motion charts, but with semantics



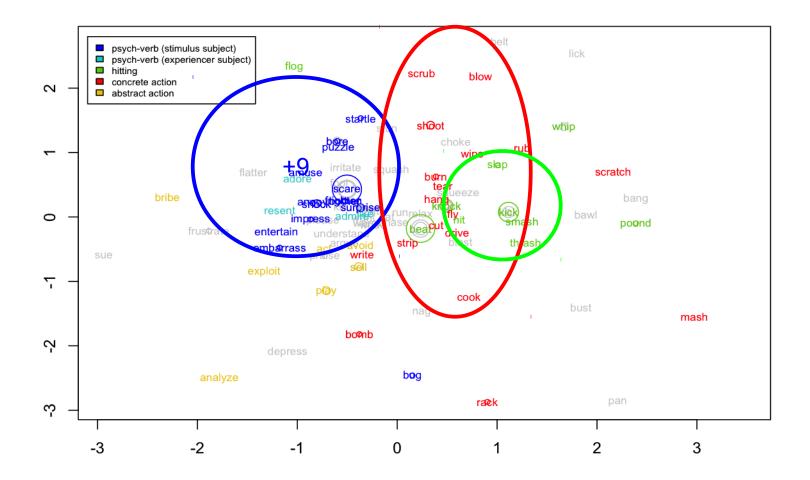
#### The hell-construction in diachrony: 1930s-1940s



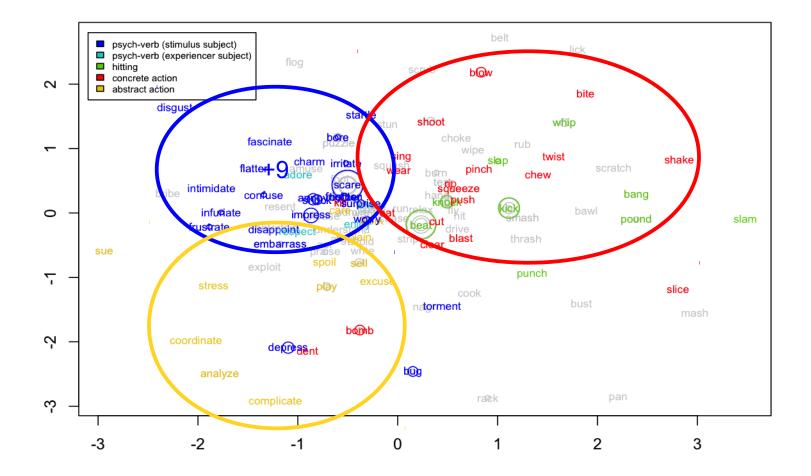
# The hell-construction in diachrony: 1950s-1960s



#### The hell-construction in diachrony: 1970s-1980s



#### The hell-construction in diachrony: 1990s-2000s



# Summary

- The domain of predilection is clearly psych-verbs (esp. with stimulus subject)
  - They form a tight cluster from the start
  - One of the most populated area at all times
  - They regularly attract new members
- What about the other semantic domains?
  - More sparsely populated, i.e., low type frequency, high semantic variability
  - Markedly fewer in the 1930s-1940s (psych-verbs dominate)
  - They first attract few new members
  - Their productivity increases later
    - e.g., in the 1970s-1980s for concrete actions in the 1990s-2000s for abstract actions



# Summary

- The results are in line with current usage-based models of productivity
  - i.e., productivity is a function of type frequency and semantic variability
  - Densely populated regions are the most likely to attract new members
  - In sparsely populated regions, a "critical mass" of verbs is needed for productivity to take off
  - Token frequency is not a particularly strong source of productivity
    - e.g., the frequent verb of hitting *kick* remains largely isolated throughout
    - Only a few new verbs appear sporadically in its neighborhood: presumably analogical extensions from a salient model (Barðdal 2008; Bybee and Eddington 2006)



### Limits of the present approach

- BNC: British English; AmE data should be used
- Broad semantic domains are visible, but the inner structure of these domains is not always properly reflected

e.g., startle and surprise are far apart

- Does not handle polysemy
- How to improve the model?
  - Include grammatical information: dependency-based vector-space models (Padó and Lapata 2007)
  - Use automatic sense induction (Purandare and Pedersen 2004) to handle polysemy in a data-driven way



# Conclusion

- A promising approach for the study of syntactic productivity
- The range of other questions it could address is yet to be explored
- Not by any way perfect, but even this coarse model gives a pretty clear picture
  - Verbs from the same broad classes occupy the same regions
  - Follows the predictions of current models of productivity
- Benefits
  - Instantaneously reveals patterns of productivity
  - The visualization allows to easily spot semantic changes in diachrony



# Thanks for your attention!

- Andrews, M., Vigliocco, G. & D. Vinson (2009). Integrating Experiential and Distributional Data to Learn Semantic Representations. *Psychological Review* 116(3), 463-498.
- Barðdal, J. (2008). Productivity: Evidence from Case and Argument Structure in Icelandic. Amsterdam: John Benjamins.
- Bybee, J. and D. Eddington (2006). A usage-based approach to Spanish verbs of 'becoming'. Language 82 (2), 323-355.
- Davies, M. (2010-). *The Corpus of Historical American English: 400 million words, 1810-2009*. Available online at http://corpus.byu.edu/coha/.
- Firth, J.R. (1957). A synopsis of linguistic theory 1930-1955. In Studies in Linguistic Analysis, pp. 1-32. Oxford: Philological Society.
- Gries, S. and A. Stefanowitsch (2010). Cluster analysis and the identification of collexeme classes. In S. Rice & J. Newman (eds.), *Empirical and experimental methods in cognitive/functional research*, 73-90. Stanford, CA: CSLI.
- Hilpert, M. (2011). Dynamic visualizations of language change: Motion charts on the basis of bivariate and multivariate data from diachronic corpora. *International Journal of Corpus Linguistics* 16(4), 435–461.
- Landauer, T. K., Foltz, P. W., and Laham, D. (1998). Introduction to Latent Semantic Analysis. Discourse Processes 25, 259-284.
- Levshina, N. and K. Heylen. (in press). A Radically Data-driven Construction Grammar: Experiments with Dutch causative constructions. In R. Boogaart, T. Colleman & G. Rutten (Eds.), *Constructions in Germanic Extending the scope*.
- Lund, K., Burgess, C. and R. Atchley (1995). Semantic and associative priming in a high-dimensional semantic space. *Cognitive Science Proceedings* (LEA), 660-665.
- Padó, S. and M. Lapata (2007). Dependency-based Construction of Semantic Space Models. Computational Linguistics 33(2), 161-199.
- Purandare, A. and T. Pedersen (2004). Word Sense Discrimination by Clustering Contexts in Vector and Similarity Spaces. In *Proceedings* of the Conference on Computational Natural Language Learning (CoNLL), May 6-7, 2004, Boston, MA, pp. 41-48.
- Sahlgren, M. (2001). Vector-based semantic analysis: Representing word meanings based on random labels. In *Proceedings of the ESSLLI 2001 Workshop on Semantic Knowledge Acquisition and Categorisation, Helsinki, Finland*.
- Suttle, L. and A. Goldberg (2011). The partial productivity of constructions as induction. *Linguistics* 49 (6): 1237–1269.
- Wonnacott, E., J. Boyd, J. Thompson and A. Goldberg (2012). Input effects on the acquisition of a novel phrasal construction in 5 year olds. *Journal of Memory and Language* 66: 458–478.
- Zeschel, A. (2012). Incipient productivity. A construction-based approach to linguistic creativity. Berlin/New York: de Gruyter.

