

A distributional semantic approach to identifying stages in constructional productivity change

Florent Perek University of Birmingham

Overview

- New method for diachronic studies
- Aim: identify stages of language change in the productivity of constructions
- Combines variability-based neighbour clustering and distributional semantics
- □ Case study on the recent history of the *way*-construction

Usage-based approaches to the study of language change

- □ Typical corpus-based studies of language change
 - Extract tokens from a diachronic corpus
 - Classify these tokens according to some criterion
 - Compare the state of the language at different points in time
- □ Assess stages of language change
 - When was it relatively stable, and for how long?
 - When did it change (and how)?

Manual periodization

□ Frequency of passive constructions from the 1920s onwards (TIMES corpus; source: Hilpert 2013: 30)

Hilpert, M. (2013). Constructional Change in English. Developments in Allomorphy, Word Formation, and Syntax. Cambridge: Cambridge University Press

Problems with manual periodization

- □ Stages are not always clear to discern
- Potentially subjective: what are the criteria for splitting periods?
 - Different possible groupings for the same data
 - Comparison between studies
- □ More complex when multiple variables are considered
 - e.g., token frequency + type frequency

Periodization

- □ This problem was first exposed by Gries & Hilpert (2008)
- They introduce "variability-based neighbour clustering" (VNC) as a method for automatic periodization
- Variant of agglomerative clustering algorithm
 - Periods are grouped according to their similarity, following some pre-defined criteria
 - Only time-adjacent periods can be merged

The VNC algorithm

- Starting point: data partitioned into "natural" time periods (years, decades, etc.)
- Look at all pairs of adjacent periods (e.g, 1830s-1840s, 1840s-1850s, etc.). Measure their similarity according to some quantifiable property/ies.
- 2. Merge the two periods that are the most similar.
- 3. Calculate the properties of the merger as the mean values of its constituent periods.
- □ Repeat until all periods have been merged.

VNC: an example

VNC with one variable: frequency (Hilpert 2013: 36) Distance in summed standard deviations Tokens per million words Time

Hilpert, M. (2013). *Constructional Change in English. Developments in Allomorphy, Word Formation, and Syntax.* Cambridge: Cambridge University Press

VNC

- Most applications of VNC so far are based on quantitative variables:
 - Frequencies: tokens, types, hapax legomena etc.
 - Frequency distributions of lexical items
 - Distinctive collexeme analysis
- □ Main novelty of this work: include semantic information
- □ Especially appropriate for the study of productivity

Productivity

- □ The property of a construction to attract new lexical fillers
- E.g., verbs in the *way*-construction (Israel 1996)
 They hacked their way through the jungle. (from 16th century)
 She talked her way into the club. (from 19th century)
- □ Type frequency often taken as an indicator of productivity
 - Number of different items, but not a measure of how different these items are
 - Need to consider the semantic diversity of the distribution

Operationalizing word meaning

□ Distributional semantics (Lenci 2008)

- "You shall know a word by the company it keeps."
 (Firth 1957: 11)
- Words that occur in similar contexts tend to have related meanings (Miller & Charles 1991)
- Distributional Semantic Models capture the meaning of words through their distribution in large corpora

- Firth, J.R. (1957). A synopsis of linguistic theory 1930-1955. In *Studies in Linguistic Analysis*, pp. 1-32. Oxford: Philological Society.
- Lenci, A. (2008). Distributional semantics in linguistic and cognitive research. Rivista di Linguistica, 20(1), 1–31.
- Miller, G. & W. Charles (1991). Contextual correlates of semantic similarity. Language and Cognitive Processes, 6(1), 1-28.

"Bag of words" approach

- Distributional data extracted from COHA (Davies 2010);
 400 MW from 1810 to 2009
- □ Collocates of all verbs in a 2-word window
- Restricted to the 10,000 most frequent nouns, verbs, adjectives and adverbs

the upper crust;	cut	a lip in it ; and ornament
growing season. " I	spend	a lot of my garden time
and disdainful port ;	looked	intrepidly and indignantly
mocking me? What! I	marry	a woman sixty-four years old
that they no longer	fight	against it ; it is embalmed

Davies, M. (2010). The Corpus of Historical American English: 400 million words, 1810-2009. Available online at http://corpus.byu.edu/coha/

Distributional semantic model

- □ Co-occurrence frequencies turned into PPMI scores
- 10,000 columns of the co-occurrence matrix reduced to 300 dimensions with SVD
- In the distributional semantic model, each verb corresponds to an array of 300 values, i.e., a vector

	(column1)) (column2)	(column3)	(column300)
find	15.59443	-2.022215	0.561186	0.5778517
carry	21.82777	4.714768	-11.974389	0.5226300
answer	11.66246	2.008967	8.810539	0.2389049
push	22.09577	13.130336	-6.027978	. 0.8539545
• • •	• • •	• • •	• • • • • • • •	

- □ Each column is a distributional-semantic feature
- Semantically similar words tend to have similar values in the same features

Distributional period clustering

- Proposal: use distributional semantic to build representations of the semantic range of a construction
- □ Case study: the *way*-construction
 - E.g., They pushed their way through the crowd
 - Data: all instances in the COHA between 1830 and 2009
 - Manually filtered and annotated for constructional meaning:
 Path-creation: the verb describes what enables motion
 They hacked their way through the jungle. Manner: the verb describes the manner of motion
 They trudged their way through the snow.

Period vectors

- □ For each period, extract the semantic vector of each verb in the distribution of the construction
- Add all vectors and divide by the number of verbs: this is the period vector.

	(column1)	(column2)	(column3)	(column300)	
make	14.09814	-4.231832	-1.844898 .	0.06963598	
find	15.59443	-2.022215	0.561186 .	0.5778517	
push	22.09577	13.130336	-6.027978 .	0.8539545	
Sum	51.78834	6.876289	-7.311691 .	0.3457388	
/3	17.26278	2.292096	-2.43723 .	0.1152463 <	— period vector

- □ "Semantic average" of the distribution.
- Features of the period vector reflect semantic properties of the verbs attested in the period

Distributional period clustering

- □ The VNC algorithm is run on the period vectors
- □ Similarity between periods is measured by Pearson's *r*
- The output dendrogram shows the semantic history of the construction:
 - Early mergers correspond to periods of semantic stability.
 - Late mergers of large clusters indicate semantic shifts.

Distributional period clustering of the path-creation way-construction

Distributional period clustering of the manner way-construction

Interpreting period clustering

□ How to characterize each period?

- The distributional-semantic features are highly abstract and not directly interpretable
- The only way to interpret semantic changes is to look at the verb themselves
- □ How do verbs in each period relate to the semantic range of their period vs. the surrounding periods?

Interpreting period clustering

□ For all verbs in a period, calculate the difference between:

- The similarity of the verb vector to the period vector
- And the similarity of the verb vector to a surrounding period
 - i.e., $similarity(V_{period}, V_{verb}) similarity(V_{period+1}, V_{verb})$
 - or $similarity(V_{period}, V_{verb}) similarity(V_{period-1}, V_{verb})$
- Similarity measured by Pearson's r
- Positive differences indicate that the verb is more typical of that period than of the neighbouring period
- The verbs with the highest differences should provide an indication of semantic change in either direction

Distributional period clustering of the path-creation way-construction

Distributional period clustering of the manner way-construction

Difficulty component less prominent, more "neutral" manners of motion

Verbs describing movements of the agent

Summary

- □ Period clustering identifies two broad semantic changes
- □ 1) in the path-creation *way*-construction
 - Shift from physical path creation to more abstract means
 - Started in the 1880s, gradual expansion
- □ 2) in the manner *way*-construction
 - Shift from difficult motion from general manner of motion
 - Started in the 1890s
- □ In line with the findings of Perek (to appear)

Perek, F. (to appear). Recent change in the productivity and schematicity of the *way*-construction: a distributional semantic analysis. To appear in *Corpus Linguistics and Linguistic Theory*.

Conclusion

- Distributional period clustering captures semantic changes in the productivity of constructions
- □ Represents a step forward from regular VNC
- □ Results confirm previous studies, but two advantages
 - Semantic changes are inferred quantitatively rather than assessed impressionistically
 - Changes can be more precisely dated

Thanks for your attention!

f.b.perek@bham.ac.uk www.fperek.net