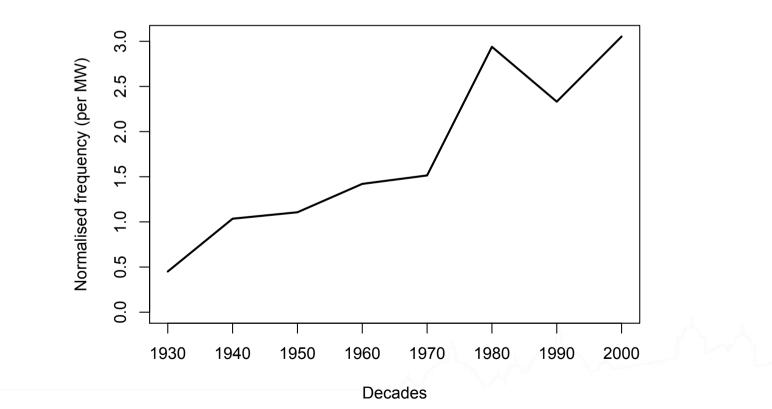


Periodization of constructional productivity in diachronic corpora

Florent Perek University of Birmingham

Overview

- New method for diachronic studies
- Aim: identify stages of language change in the productivity of grammatical constructions
- □ Two case studies


Corpus-based studies of language change

□ Typical corpus-based studies of language change

- Extract tokens from a diachronic corpus
- Classify these tokens according to some criterion
- Compare the state of the language at different points in time
- □ Assess stages of language change
 - When was it relatively stable, and for how long?
 - When did it change (and how)?

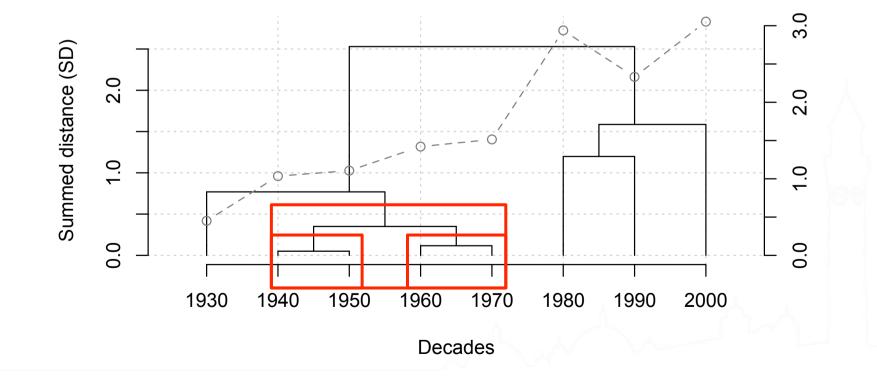
Manual periodization

□ Normalised frequency of the *hell*-construction in the COHA "Verb *the hell out of*", e.g., *You scared the hell out of me!*

Problems with manual periodization

- □ Stages are not always clear to discern
- Potentially subjective: what are the criteria for splitting periods?
 - Different possible groupings for the same data
 - Comparison between studies
- □ More complex when multiple variables are considered
 - e.g., token frequency + type frequency

Periodization


- □ This problem was first exposed by Gries & Hilpert (2008)
- They introduce "variability-based neighbour clustering" (VNC) as a method for automatic periodization
- Variant of agglomerative clustering algorithm
 - Periods are grouped according to their similarity, following some pre-defined criteria
 - Only time-adjacent periods can be merged

The VNC algorithm

- Starting point: data partitioned into "natural" time periods (years, decades, etc.)
- Look at all pairs of adjacent periods (e.g., 1930s-1940s, 1940s-1950s, etc.). Measure their similarity according to some quantifiable property/ies.
- 2. Merge the two periods that are the most similar.
- 3. Calculate the properties of the merger as the mean values of its constituent periods.
- □ Repeat until all periods have been merged.

VNC: an example

□ VNC with one variable: frequency of the *hell*-construction

VNC

□ Two kinds of uses of VNC in the literature

- To partition data in a principled way for further analysis
- To uncover patterns of change and/or compare changes
- □ So far mostly based on quantitative variables
 - Frequencies: tokens, types, hapax legomena, etc.
 - Frequency distributions of lexical items, collexeme analysis
- Lines up with usage-based linguistics: grammatical representations are shaped by frequency
- Frequency = good starting point for looking at the history of constructions, but do not tell the whole story

Productivity

□ Especially true for the study of productivity

- The property of a construction to attract new lexical fillers
- E.g., verbs in the *way*-construction (Israel 1996)
 They hacked their way through the jungle. (16th century)
 She talked her way into the club. (19th century)
- □ Type frequency often taken as an indicator of productivity
 - Number of different items, but not how different they are
 - Need to consider the semantic diversity of the distribution

Operationalizing word meaning

□ Distributional semantics (Lenci 2008)

- "You shall know a word by the company it keeps."
 (Firth 1957: 11)
- Words that occur in similar contexts tend to have related meanings (Miller & Charles 1991)
- Captures the meaning of words through their distribution in a large corpus
- Proposal: use distributional semantics to build representations of the semantic range of a construction
- Firth, J.R. (1957). A synopsis of linguistic theory 1930-1955. In *Studies in Linguistic Analysis*, pp. 1-32. Oxford: Philological Society.
- Lenci, A. (2008). Distributional semantics in linguistic and cognitive research. Rivista di Linguistica, 20(1), 1–31.
- Miller, G. & W. Charles (1991). Contextual correlates of semantic similarity. Language and Cognitive Processes, 6(1), 1-28.

"Bag of words" approach

- Distributional data extracted from COHA (Davies 2010);
 400 MW from 1810 to 2009
- □ Collocates of all verbs in a 2-word window
- Restricted to the 10,000 most frequent nouns, verbs, adjectives and adverbs

the upper crust ;	cut	a lip in it ; and ornament
growing season. " I	spend	a lot of my garden time
and disdainful port;	looked	intrepidly and indignantly
mocking me? What! I	marry	a woman sixty-four years old
that they no longer	fight	against it ; it is embalmed

Davies, M. (2010). The Corpus of Historical American English: 400 million words, 1810-2009. Available online at http://corpus.byu.edu/coha/

Distributional semantic model

- □ Co-occurrence frequencies turned into PPMI scores
- 10,000 columns of the co-occurrence matrix reduced to
 300 distributional-semantic features with SVD
- In the distributional semantic model, each verb corresponds to an array of 300 values, i.e., a vector

	(column1)	(column2)	(column3)		(column300)
find	15.59443	-2.022215	0.561186		-0.5778517
carry	21.82777	4.714768	-11.974389		-0.5226300
answer	11.66246	2.008967	8.810539		-0.2389049
push	22.09577	13.130336	-6.027978	•••	0.8539545
• • •	•••	•••	•••		• • •

Semantically similar words tend to have similar values in the same features

Period vectors

- □ For each period, extract the semantic vector of each verb in the distribution of the construction
- Add all vectors and divide by the number of verbs: this is the period vector

		(column1)	(column2)	(column3)		(column300)	
	make	14.09814	-4.231832	-1.844898		0.06963598	
	find	15.59443	-2.022215	0.561186		-0.5778517	
	push	22.09577	13.130336	-6.027978	•••	0.8539545	
Sum		51.78834	6.876289	-7.311691	•••	0.3457388	
/3		17.26278	2.292096	-2.43723	• • •	0.1152463 <	— period vector

"Semantic average" of the distribution; reflects semantic properties of the verbs attested in the period

Distributional period clustering

- □ The VNC algorithm is run on the period vectors
- □ Similarity is measured by cosines between vectors
- The output dendrogram shows the semantic history of the construction:
 - Early mergers correspond to periods of semantic stability.
 - Late mergers of large clusters indicate semantic shifts.

Two case studies

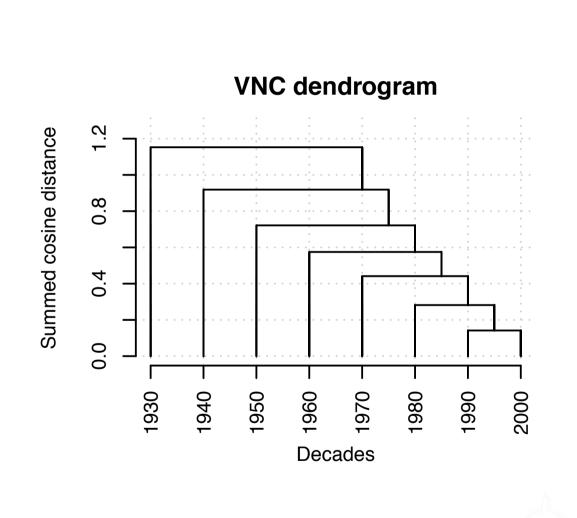
□ Both using COHA, focusing on verbs in two constructions

□ The *hell*-construction V *the hell out of* NP

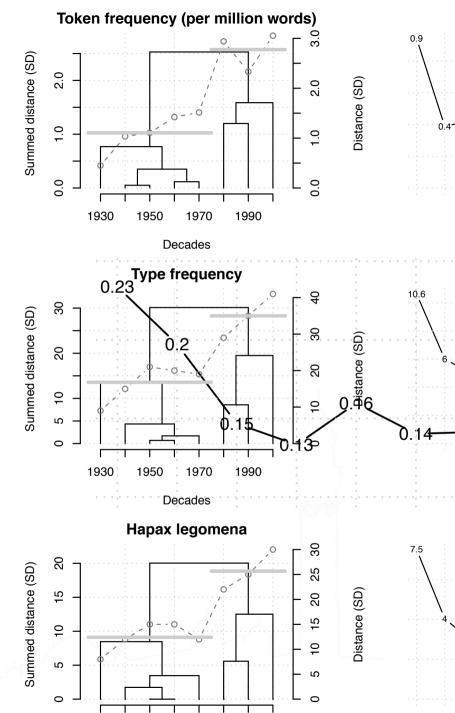
You scared the hell out of me!

I enjoyed the hell out of that show.

They beat the hell out of him.


□ The *way*-construction V *one's way* PP

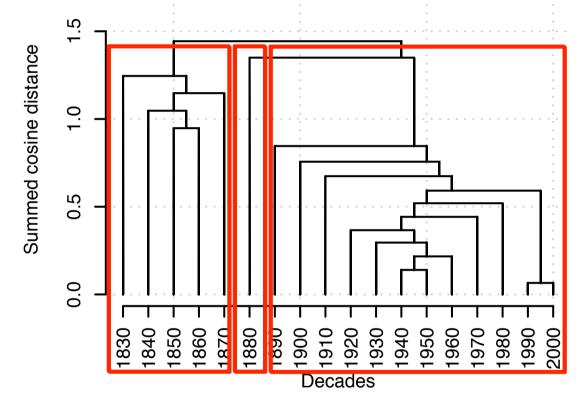
They hacked their way through the jungle.

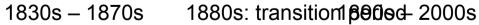

She talked her way into the club.

Restricted to the "path-creation" interpretation: the verb describes an action that enables motion

(vs. manner: They trudged their way through the snow)

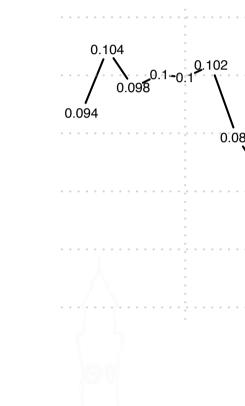
The *hell*-construction


The *hell*-construction


- □ The shape of the dendrogram reflects gradual expansion rather than brutal shifts (cf. Perek 2014, 2016)
- Construction centered on the same semantic classes, with new members joining the periphery
- □ Vs. two-way split obtained with quantitative measures
- Questions the practice of using quantitative data for the initial partitioning

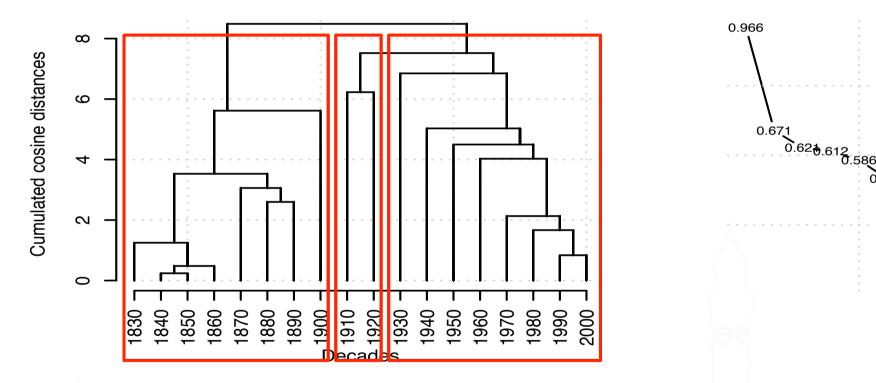
Perek, F. (2014). Vector spaces for historical linguistics: Using distributional semantics to study syntactic productivity in diachrony. In *Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, Maryland USA, June 23-25 2014* (pp. 309-314).

Perek, F. (2016). Using distributional semantics to study syntactic productivity in diachrony: A case study. *Linguistics*, 54(1), 149–188.


The way-construction

Concrete, physical a/totionab/sitearet vel/losethabstractpreovinousupleadidon, social creation of a path: buy, smell, staminter, abeg, the tok; pay, etc.

hew, shape, explored, locar ve, ntcaetle, vienkes, the hoth, echestlep, esioelr. , bspriet, laugh, talk, enforce, shoulder, etierce, feel, we abult ye let trace, burn, etc.


The *way*-construction

- Change from mostly concrete to more abstract verbs (in line with Israel 1996, Perek aop)
- How does distributional semantics compare to collostructional analysis for periodization?
 - Which verbs occur more distinctively frequently in each decade than in the others? (Hilpert 2006)
 - Each verb receives an association score in each decade
 - The distribution of collexemes can be used as input for VNC (Hilpert 2012): change in lexico-grammatical associations

Hilpert, M. 2006. Distinctive collexeme analysis and diachrony. *Corpus Linguistics and Linguistic Theory* 2(2). 243–57.
Hilpert, M. 2012. Diachronic collostructional analysis. How to use it, and how to deal with confounding factors. In K. Allan & J. Robynson (eds.), *Current Methods in Historical Semantics*, 133–160. Berlin: Mouton de Gruyter.

Perek, F. (ahead-of-print). Recent change in the productivity and schematicity of the *way*-construction: a distributional semantic analysis. *Corpus Linguistics and Linguistic Theory*.

VNC with collostructional analysis

Physical change of state: *cut*, *hew*, *tear*, *cleave*, *break*, *pierce*, *burst*, etc. Semantically neutral verbs: *take*, *find*, *win*, *make* Haphazard list of more abstract verbs:

earn, sing, advertise, talk, buy, brew, declaim, experiment negotiate, lie (1910s-1920s) (1930s-2000s)

VNC with collostructional analysis

- □ Some evidence of a shift from concrete to abstract verbs
- □ But it is attested later than in the distributional VNC
- □ Semantic classes are less clearly identifiable
- With collostructional analysis, the detection of changes is highly dependent on token frequency
 - Frequency associations are not always semantically relevant
 - "Real" change is only exemplified by high-frequency types
 - The timing of these changes is delayed, until sufficient frequency is reached

Conclusion

- Distributional period clustering captures semantic changes in the productivity of constructions
- □ Represents a step forward from regular VNC
- Results confirm previous studies
- □ Two advantages
 - Semantic changes are inferred mathematically rather than assessed impressionistically
 - Changes can be dated more precisely
 - ... paper (with Martin Hilpert) under review, downloadable at www.fperek.net

Thanks for your attention!

f.b.perek@bham.ac.uk www.fperek.net