Rethinking grammatical meaning and its relation to lexical usage

Florent Perek

Freiburg Institute for Advanced Studies & UMR 8163 STL – Université Lille 3 florent.perek@gmail.com

Overview

- The problem: constructional meaning
 - i.e., the meaning conveyed by syntactic constructions
 - Current claim: derived from the construction's distribution
 - But it seems to be more complex than that
 - A case in point: the conative construction in English
- I will show that:
 - A general characterization cannot be derived from usage
 - Lower-level generalizations are more important
 - This suggests a different view of constructional meaning and its relation to usage

- Semantic aspects of grammar
 - Traditional position
 - Only lexical items convey meaning
 - Grammar = abstract rules, devoid of meaning
 - Constructional approaches adopt a different view:
 - The whole grammar consists of form-meaning pairs
 - Linguistic elements of any kind conveys meaning of its own
 - That includes syntactic patterns, such as verb-argument constructions

- Example: the ditransitive construction (Goldberg 1995)
 - Form: NP V NP NP (double-object pattern)
 - Conveys the idea of 'transfer' on its own, e.g.:

Kick me the ball!

Dad promised me a car.

Gran baked us a cake.

- Empirical evidence: Kaschak & Glenberg (2000)
 - Sentences with nonce denominal verbs
 - e.g., I crutched him the apple
 - Understood as a transfer, despite the nonce verb

- The origin of constructional meaning
 - Current (usage-based) position:
 - Constructions come to be associated with the meaning of their most typical lexical items
 - Verbs in the case of verb-argument constructions
 - Example: the ditransitive construction
 - Most typical verbs: verbs of giving (cf. Gries and Stefanowitsch 2003): *give*, *send*, *lend*, ...
 - Therefore 'transfer' is the meaning of that construction
 - Ample empirical evidence (corpus studies, experiments) with several constructions

- Problems with the lexical origin of constructional meaning
 - It requires that all constructional meanings are lexicalized
 - Problematic for abstract constructions (e.g., the transitive)
 - Revised version of the hypothesis:
 - Constructions are stored pairings of a syntactic form with some recurrent components of lexical meaning
 - Still problematic for some constructions
 - A case in point: the conative construction (NP V at NP)
 - Occurs with transitive verbs: at is inserted before the DO
 The hunter shot at the duck (vs. The hunter shot the duck)
 He swept at the floor (vs. He swept the floor)
 - She kicked at the ball (vs. She kicked the ball)

- The meaning of the conative construction
 - Basically a "detransitivizing" function: one (or more) features of the transitive variant is absent, e.g.:
 - Contact

He hit at her face with the gun, but she jerked her head back [BNC H85-837]

- Intentionality of the agent
 They wandered on, aimlessly kicking at the pine cones [BNC B3J-2291]
- Completion
 He gulped at the beer again [BNC GWF-1031]
- If anything, the general meaning is very abstract

"the emphasis is not on the effect of the activity on some specific object [...] but rather on the subject's engaging in the activity" (Dixon 1991: 280)

- Can we relate this meaning to lexical usage?
 - cf. Perek (to appear): collexeme analysis of the conative
 - Collexeme analysis in a nutshell:
 - Captures how typical a word is given its frequencies of occurrence and of non-occurrence in a construction
 - In practice: all other things being equal, ...
 - ... if F(V in C) is high, typicality is high
 - ... if F(V in other Cs) is high, typicality is low
 - Output: collexemes ranked by typicality (collostruction strength)
 - Superior to raw frequencies to profile constructional meaning
 - Corpus: 16 MW taken from 431 novels (BNC); 2563 instances of the construction over 159 verbs

Results:

rank	verb	f(conative:all)	coll.strength	rank	verb	f(conative:all)	coll.strength
1	tug	226:661	209.92	16	hammer	29:263	12.87
2	clutch	179:823	127.13	17	snatch	43:567	12.86
3	dab	72:166	75.74	18	jab	24:180	12.58
4	claw	53:156	49.14	19	scrabble	18:112	11
5	gnaw	43:97	46.02	20	раш	13:56	10.23
6	sniff	73:643	32.05	21	scratch	35:524	9.13
7	nibble	36:121	31.26	22	slash	17:149	8.07
8	sip	71:689	28.56	23	swipe	9:32	8.07
9	peck	29:87	26.95	24	niggle	8:26	7.58
10	nag	31:107	26.62	25	poke	26:364	7.55
11	pluck	44:300	24.13	26	suck	35:656	6.7
12	tear	91:1363	22.51	27	prod	17:190	6.52
13	stab	36:291	17.41	28	kick	51:1186	6.44
14	grab	76:1217	17.29	29	lap	11:112	4.82
15	hack	22:140	13.08	30	strain	23:466	4.13

- Many different verbs, no common semantic feature(s)
- No clear indication of the constructional meaning

- Proposal: verb-class-specific constructions (Croft 2003)
 - Not one general construction but several lower-level ones
 - In line with the assumptions of construction grammar
 cf. Langacker (2000: 3): "linguistic patterns occupy the entire spectrum ranging from the wholly idiosyncratic to the maximally general"
 - Language acquisition: children start with low-level schemas
 - The exact distribution of a construction is better captured at lower levels (cf. Boas 2003, Herbst 2007)
 - Plausible from a processing perspective, cf. Langacker (2000):
 - "lower-level schemas [...] have a built-in advantage in the competition with respect to higher-level schemas" (p. 16)

- Semantic annotation
 - Based on WordNet (Fellbaum 1998)
 - Verbs in the distribution grouped into semantic classes
 - Then collexeme analysis performed on each verb-classspecific construction
- Four classes under study:
 - Verbs of ingestion (eat, nibble, sip)
 - Verbs of cutting (cut, hack, nick)
 - Verbs of pulling (pull, tug, drag)
 - Verbs of striking (hit, kick, pound)

- Verbs of ingestion
 - James Bond sipped at his Martini
 - An agent takes in some substance, consuming it.
- In the ingestion-conative construction:
 - Only a small amount is ingested ('bit-by-bit' reading)
 - Open to repetition

- Top collexemes:
 - pick, sip, nibble: small quantity, 'bit-by-bit' reading
- Bottom collexeme: eat
 - Maximally general, lends itself better to a holistic interpretation

Rank	Verb	\mathbf{Fq}_{corpus}	$\mathbf{Fq}_{construction}$	CollStr
1	pick	35	29	36.91
2	sip	684	76	21.56
3	nibble	78	27	19.84
4	peck	34	17	15.84
5	suck	113	13	3.8
6	gulp	112	8	1.35
7	swig	23	3	1.34
8	lick	57	3	0.48
9	lap	20	1	0.29
10	gobble	36	3	-0.2
11	eat	3909	1	-111.39
	Total	5101	181	

- Verbs of cutting
 - The explorers chopped at the jungle with machetes
 - An agent moves a suitable instrument against some object, causing a rupture in its physical integrity.
 - In the cutting-conative construction:
 - Contact is made but is minimal or fails entirely
 - Implicature of repetition

- Top collexemes:
 - *hack*, *saw*, *chisel*: inherently repetitive, a single movement does not bring about a significant effect
 - *chip*: patient is minimally affected
- Bottom collexeme:
 - *cut*: maximally neutral, holistic interpretation

Rank	Verb	\mathbf{Fq}_{corpus}	$\mathbf{Fq}_{construction}$	CollStr
1	hack	100	22	15.75
2	saw	57	6	2.54
3	chip	29	4	2.24
4	chisel	10	2	1.59
5	scratch	127	6	0.99
6	snip	36	2	0.63
7	nick	14	1	0.51
8	chop	132	3	-0.25
9	slice	160	1	-1.14
10	cut	1437	7	-16.8
	Total	2129	54	

- Verbs of pulling
 - The goat pulled at the rope
 - An agent exerts a force on a patient, usually in order to move it towards self or to affect it in some other way.
 - In the pulling-conative construction:
 - Prevents an implicature of change of location/state
 - Repeated actions, since a single iteration does not bring about a significant effect
 - Focus on the agent

- Top collexemes:
 - *tug*: focus on the agent (lots of energy, extended duration; cf. OED), not so much on the dynamics of the event itself
 - *pick*, *pluck*: sharp, sudden motion, short duration, prone to repetition
- Bottom collexemes:
 - pull: maximally neutral
 - *drag*: strongly presupposes the motion of the patient

Rank	Verb	\mathbf{Fq}_{corpus}	$\mathbf{Fq}_{construction}$	CollStr
1	tug	457	195	118.78
2	pick	95	34	16.05
3	pluck	192	43	11.92
4	tweak	23	3	0.69
5	twitch	28	3	0.53
6	jerk	174	7	-1.07
7	wrench	210	8	-1.34
8	yank	108	1	-2.38
9	haul	356	5	-6.03
10	drag	1068	22	-13.61
11	pull	3872	127	-40.92
	Total	6583	448	

- Verb of striking
 - Sally kicked at the ball
 - An agent performs some movement in the direction of a patient, aiming at forceful contact with it, usually with the intention of affecting it (harm, damage, motion)
 - In the striking-conative construction:
 - The agent's goal is not reached: lack of contact, energy, effect, intentionality
 - Focus on the agent

Rank	Verb	\mathbf{Fq}_{corpus}	$\mathbf{Fq}_{construction}$	CollStr
1	dab	145	78	54.03
2	lash	112	34	13.77
3	swipe	21	10	6.51
4	peck	20	9	5.65
5	hammer	137	21	3.54
6	jab	24	6	2.37
7	pummel	28	4	0.94
8	swat	24	3	0.66
9	pound	52	5	0.57
10	scuff	16	2	0.53
11	batter	57	4	0.27
12	bat	16	1	-0.15
13	whack	18	1	-0.18
14	kick	913	60	-0.35
15	tap	499	30	-0.54
16	whip	79	3	-0.68
17	bang	151	7	-0.72
18	bash	46	1	-0.76
19	strike	810	47	-0.85
20	smash	109	4	-0.88
21	punch	159	6	-1.09
22	thump	111	3	-1.28
23	slap	340	13	-1.88
24	beat	502	20	-2.36
25	pat	507	6	-9.27
26	hit	983	18	-13.78
	Total	5879	396	

Top collexemes:

- dab: involves little energy, normally not affecting the target
- hammer: multiple blows (a single blow does not suffice in affecting the patient in the intended way)
- Agent-oriented verbs (lash, swipe, peck, jab)
 - Focus on the agent's activity (defined shape and/or specific body-part/instrument)
 - Hints at the agent-focus of the construction

Bottom collexemes:

- hit, strike: maximally neutral
- Many impact-oriented verbs (smash, thump, beat)
 - Focus on the contact between agent and patient (specify intensity or effect)
 - At odds with the 'lack of contact/effect' reading

- Summary: in each verb-class-specific construction:
 - Strongest collexemes = verbs that inherently bear semantic features commonly attributed to each construction
 - Conversely, more "basic" verbs are always repelled
 - It appears that the verb-class-specific constructions may have a lexical origin, while the general construction does not

Conclusion

- The conative construction revisited
 - Centered on a few verb-class-specific constructions
 - Other uses may be integrated through analogy
- No need for an abstract meaning
 - Lower-level constructions are sufficient and more basic
 - New picture of the relation of constructional meaning to lexical usage => more accurate at lower levels
 - Similar finding to Bybee & Eddington's (2006)
 - But extends the same idea to constructional meaning
 - Both subsumes and complements previous accounts

Thanks for your attention!

- Boas, H. (2003). A constructional approach to resultatives. Stanford: CSLI Publications.
- Bybee, J. & D. Eddington (2006). A usage-based approach to Spanish verbs of 'becoming'. *Language* 82.2, 323–355.
- Croft, W. (2003). Lexical rules vs. constructions: a false dichotomy. In Cuyckens, H., Berg, T., Dirven, R. & K. Panther (eds.), *Motivation in Language: Studies in honour of Günter Radden*. Amsterdam: John Benjamins, 49–68.
- Dixon, R. (1991). A New Approach to English Grammar, on Semantic Principles. Oxford: Clarendon Press.
- Fellbaum, C. (1998, ed.). WordNet: An Electronic Lexical Database. Cambridge, MA: MIT Press.
- Goldberg, A. (1995). Constructions: a construction grammar approach to argument structure. Chicago: University of Chicago Press.
- Herbst, T. (2007). Valency complements or valency patterns? In Herbst, T. & K. Götz-Votteler (eds.), *Valency: Theoretical, Descriptive and Cognitive Issues*. Berlin, New York: Mouton de Gruyter, 28–48.
- Langacker, R. (2000). A dynamic usage-based model. In Barlow, M. & S. Kemmer (eds.), *Usage-Based Models of Language*. Stanford: CSLI Publications, 1–63.
- Kaschak, M. & A. Glenberg (2000). Constructing meaning: The role of affordances and grammatical constructions in sentence comprehension. *Journal of Memory and Language* 43, 508–529.
- Perek, F. (to appear). Rethinking constructional polysemy: the case of the English conative construction. In Glynn, D. & J. Robinson (eds.), *Polysemy and Synonymy. Corpus Methods and Applications in Cognitive Linguistics*. Amsterdam: John Benjamins.
- Stefanowitsch, A. & S. Gries (2003). Collostructions: investigating the interaction between words and constructions. *International Journal of Corpus Linguistics* 8.2, 209–243.